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A RELATIVISTIC VERSION OF THE GAUSS-BONNET
FORMULA

GARRY HELZER

Infroduction

The Gauss-Bonnet formula relates the sum of the exterior angles of a
geodesic polygon on a surface to the total Gaussian curvature which the polygon
encloses. Thus one obtains such statements as: the sum of the interior angles
of a geodesic triangle is = if and only if the total curvature enclosed by the
triangle is zero.

To develop a version of the formula which applies to surfaces with an in-
definite metric requires only a careful definition of a quantity to replace “angle”
and a check that the arguments of the definite case remain valid. This is done
in §§1 and 2.

In § 3 an example is given to indicate the kind of physical quantity which
the total Gaussian curvature might measure.

1. The flat case

In this section the “pseudo-angle” or “proper velocity’’ between two vectors
in a plane with indefinite metric is defined and some elementary properties
listed.

Let M? denote the space of pairs of real numbers with inner product

( 1) <(a1, a2)7 (b17 b2)> = _alaz + ble -

Take the positive orientation of M* to be that given by the vector space basis
{e. = (1,0), e, = (O, D}

Let a: I — M? be a continuously differentiable curve parametrized with
respect to proper time, i.e.,

(2) {a(s),a'(s)y = —1,1,0 .

The curve « is called timelike, spacelike or null respectively.
Next define a moving frame {7'(s), N(s)} on « as follows. Let {u,, u,} be an
orthonormal frame at «(s), and set
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T(s) = &/(s) = xu, + x,u, ,

X,U XU if {u,, u,} has positive orientation ,
(3) N(s)={21+12 {1 2} p

—(xu, + xu,) if {u,, u,} has negative orientation .

The definition of N is independent of the choice of {«,, u,} since N is simply
T reflected in one piece of the light cone.
Lastly define a real valued function ¢ with domain / by
Inla + b ifa+b+0,
(4) é(s) = { | |

—Inja — b| fa+b=0,

where T(s) = ae, + be,. Since [a + bj|a — b| = 1 or O, the two functions on
the right hand side of (4) are equal where they are both defined.
Theorem 1. There is a unique function g defined on I for which

T'(s) = g(sIN(s) , N'(s) = g()T(s) .

In fact g = ¢'(s).

Proof. Since « is parameterized with respect to proper time, using the
logarithmic forms of the inverse hyperbolic functions one sees that T may be
written in one of the forms:

+(e,cosh ¢ + e,sinh @), =+(e sinh¢g + e,coshg), =+ale =+ e,) .

Direct calculation now gives the theorem. q.e.d.

The Euclidean version of Theorem 1 is the starting point of the theory of
plane curves. There s is the arc length and ¢ is the angle which T makes with
the x-axis. Here ¢ is the “pseudo-angle” which T makes with e, i.e., with the
time axis. The functions 7, N, ¢ are invariants in the sense that their definition
does not depend on the choice of basis {e,, e,}. On the other hand if one
changes, the basis ¢ will change by an additive constant and its sign depends
on the orientation of the basis. As in the Euclidean theory, it may be shown
that g determines « up to a Lorentz transformation (translations included).

Suppose a particle is constrained to move in one spatial dimension, say the
e, axis where {e,, e,, €;, ¢,} is an orthonormal basis of the Minkowski space of
special relativity (¢ = 1). Then by suppressing the irrelevant directions e,, e,
we may consider the space time trace of the particle to be the curve « above.
In this case g(s) is the acceleration at time s as measured by an observer at
rest with respect to the particle and since ¢’ = g, one might call ¢ a “proper
velocity.”

For an observer at rest with respect to the frame {e,, ¢,} the expression

a(t) = te; + x(De,
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describes the motion of the particle. Taking {e,, e} oriented so that T =
e, cosh ¢ + ¢,sinh ¢ we see that #/(s) = cosh ¢ and hence the speed of the
particle measured by this observer is

@:ﬂ_.diﬁ__tanhgﬁ,
dt dt d
and so ¢ = tanh™ v = ¢ + 1v* + - ... Thus for v € 1, ¢ is indistinguishable

from v. The sum formula for the hyperbolic tangent shows that composing
velocities corresponds to adding ¢'s.

For a particle moving with the speed of light, ¢ is the logarithm of twice the
energy (= e, component of T). This reduces to

(5) ¢ = log v + const ,

where v is the frequency and hence g = ¢ = v//v. If « is spacelike, ¢ gives
the relative velocity of the orthonormal frame {N, T} with respect to {e,, ¢,}.

To define an “angle” between any two unit or null vectors proceed as fol-
lows. If @ = {u,,u,} is an orthonormal basis, and # = au, + bu, is a unit or
null vector, then define ¢,(u) by (4). If ¢ = {u], w3}, it is not difficult to verify
the formulas

B0 (W) = @, (u) + &, (1) if ¢ and ¢ similarly oriented ,

(6) — oo (U) = (1) — ¢,.(uy) if ¢ and ¢ oppositely oriented .

If u, v are unit or null vectors, and ¢ is an orthonormal set, define ¢,(u, v)
= @,(u) — ¢,(v). It follows from (6) that g,(u, v) depends only on the orien-
tation of @. Thus define ¢(u, v) = ¢, (u, v) where ¢ is any positively oriented
orthonormal basis of M?. If u,, - - -, u, are unit or null vectors we have the
following formulas

(7) ¢(u17 U;) = —¢(u2, uy) ,
(8) Bty 1) + By, ) = By, us)
(9) ¢(u17 uz) + ttt "— ¢(u'n—17 un) + ¢(un7 ul) - O .

Formula (9) is the simplest case of the Gauss-Bonnet theorem. The corre-
sponding statement in the Euclidean plane is that the exterior angles of a
polygon sum to 2r.

2. General case

Throughout this section M will denote a Minkowski surface, i.e., an ab-
stract surface with each tangent plane a Minkowski plane. Attention will be
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restricted to a region of M oriented by a frame field {E,, E,}. The following
notation will be used. A general reference for the Euclidean case is {2, Chap-

ter 7].
The dual 1-forms 6,, 8, are defined by 6,(E;) = {E,, E;>. The connection
forms w,; are defined by the equations

db, = w, N\ 0,, db,=aw, N6, w,=awy,

where 4 denotes the exterior derivative, and A the wedge or exterior product.
The “area form” is “dM” = 4, /\ §,; this form depends only on the orienta-
tion of {E,, E,}. The Gaussian curvature K is defined by the formula

do, = —K6, \ 6, .

The covariant derivative in the direction of the tangent vector v is denoted
by F,. Recall that its action on a vector field ¥ = y,E, + ¥,E, is given by

(10) 7Y = (Wy] + nea(¥)E, + @y,] + »ep(0)E, ,

where v[f] denotes the directional derivative of the function f in the direction

.
Let @: I — M be a continuously differentiable curve parameterized with

respect to proper time. Let T(s) = «’(s). Then T is a unit or null vector field
along a. If T(s) = a(s)E,(a(s)) + b(s)E,(a(s)), set N(s) = bE, + aFE, along «,
and define g(s) by

V,.T =gN .
At each point of «(s) define ¢(s) by
¢(S) = ¢(E),Eg)(T(s)) .

Using (10) we immediately generalize Theorem 1 to

Theorem 2. Let a: I — M be a differentiable curve parameterized with
respect to proper time and having image contained in a region oriented by the
frame field {E,, E,}. Then

g(s) = dg/ds + w,((s)) .

Thus the acceleration measured by an observer riding with « breaks into two
parts. The term ¢/(s) is due to motion relative to the frame field {E,, E,}, and
the term wy,(«’) is due to the acceleration in the frame field itself. Notice that
« is a geodesic of M if and only if g = 0. If M is a submanifold of a higher
dimensional space, then g gives that component of acceleration in the larger
space which is tangent to A. The corresponding Fuclidean concept is that of
geodesic curvature.
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Theorem 3 (Gauss-Bonnet formula). Let R be a region in the plane, and
X: R — M a restriction of a coordinate patch mapping. Let X[R] lie in a
region oriented by the frame field {E,, E,}, and the boundary of X[R] be given
by 60X = Y7o, where a;: la,, b]) — M is a continuously differentiable curve
parameterized with respect to proper time. Assume ay;,.(a;.,) = «;(b;) for
i<n—1, and a(a) = a,(b,). Set §; ;.1 = ¢t (a;.1), (b)) fori < n— 1,
and ¢, , = ¢lai(a,), i (b,)). Then

jIXKdM +J~.Xg+ ¢1z + + ¢n—1,n + ¢‘n,1:O *

Proof. By Stokes theorem

Jf dw, = I Wy -
X ax

Since dw,, = —K6§, N\ 6, = —KdM it is sufficient to evaluate

I Wy, = Z?I @y -
ax ai

To evaluate a typical term of this integral, apply Theorem 2 to get
/5 b bi
f Wy = f wp(ei(s)ds = f g(s)ds — f 49 4s
ai a; ai ai ds
= [ &+ da) — a0 .

Since by definition we have ¢, ;,; = é(a;,,) — ¢(b,) fori <n—1and ¢, , =
dla,) — ¢(b,), summing the last formula gives the desired result.

Remark. In the notation of § 1, ¢,(1) = ¢,(— 1) for any unit or null vector
u. This means that the direction in which each boundary curve is traced affects
only the integral of g in Theorem 3. If the boundary curves are geodesics of
M, then g = 0 and this integral drops out.

3. Example-a Doppler formula

Suppose that a photon is emitted at a point 4 in the space-time of general
relativity and observed at a point B. Let o, be the space-time trace of the
photon from A to B, which is assumed to be a geodesic. Let «, be the space-
time geodesic which the source would follow if unaccelerated. Let g be the
space-time trace of the observer. Let «; be a spacelike geodesic which

i) cuts 8 orthogonally at B and ii) intersects «, at some point C.

The curve a, will exist if the region under consideration lies in a sufficiently
small geodesic neighborhood of 4. It is the intersection of two geodesic sub-
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manifolds, the first of which is the Euclidean 3-manifold of all geodesics
through B orthogonal to g, i.e., that portion of space-time which the observer
calls space at the instant when he observes the photon. The second submani-
fold is Minkowski surface of all geodesics emanating from A4 and tangent to
the plane of tangent vectors spanned by «; and «; at 4. Let 4 denote the sec-
tion of this latter manifold bounded by the curves «;. Then Theorem 3 gives
the formula

11) ”A KM + G + 6y + ¢ = O .

By (7), ¢, = —¢y and so ¢, = —(lny, + a) by the remarks following
Theorem 1 where v, is the frequency of the emitted photon. By (8), we have

b5 = dlad, ) = Plaz, f) + ¢(F,a) = ¢(f,a) =Iny, + a,

where v, is the frequency of the photon observed at B. (Since «; is orthogonal
to S one finds ¢(8’,a)) =In1 = 0.)

The pair #/, «f is a frame at B. Parallelly translate this frame along «, to C.
Since «; is a geodesic, the resulting frame is of the form {u, ¢} and it is the
frame at C which is “at rest” with respect to the observer at the event B. Thus
by (7) and (8)

b = 9t ) = — ) + gl o) — —tamhiv = L1n (L= 0
2 U+w

where v is the velocity of the unaccelerated source with respect to the ob-
server at the moment when the photon is observed.
Substituting these values for the ¢, into (11) gives

1 —
Ve = va\/l T ::exp {ILKdM} .

In the case where 4 is flat (K = 0), this reduces to the usual formula from
special relativity.
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